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Abstract

There have been theoretical studies for generation of optical coherent superposition states.

Once the superposition state is generated it is natural to ask if it is possible to amplify it

without losing the nonclassical properties of the field state. We consider amplification of the

superposition state in various amplifiers such as a sub-Poissonian amplifier, a phase-sensitive

amplifier and a classical amplifier. We show the evolution of phase probability distribution

functions in the amplifier.

1 INTRODUCTION

The superposition principle lies at the heart of quantum mechanics according to Dirac [1]. In this

paper we consider the amplification of optical superposition states. As a result of interaction of

a single mode coherent state with a nonlinear Kerr medium, the coherent state input becomes a

generalized coherent state [2 - 3]. The dynamics of a single mode field propagating in the Kerr

medium is governed by the effective Hamiltonian [2] /2t = wfi + )_fi2 where ._ is the non-linear

factor and fi is the photon number operator. Under the influence of the nonlinear interaction the

initial coherent state la) of the amplitude a evolves at time t into the state

I_(t)) =exp - k=0 _ Ik), _k=_tk 2, (1)

where ]k} is a Fock state. At the interaction time t = 7r/NA, we can rewrite Eqn(1) as a form

1 N

I_)= _ _ ei¢"l-ae'in'/N),
n--_l

(2)

which is a superposition of N coherent component states located on a circle with the centre at

the origin of phase space. If we decompose the state (2) into the Fock basis and compare it with

Eqn(1) we obtain an equation for the arguments, (,_, of the coefficients of coherent components

for an arbitrary value of N. For example when N = 4 we have

1 (e-'=/4 e-_"i41 io<>),I',I,)= 7 Io,)- - ,_)+ Ira)+1- (3)

which we call the Yurke-Stoler state throughout the paper.

Such superpositions of multicomponent coherent states may be generated not only in the

amplitude dispersive medium but also in the micromaser type experiment. Recently Garraway et

al. have proposed a method to prepare quantum superposition of multicomponent states [4, 5]
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for the eventual goal of preparation of a Fockstate. A stream of three-level atoms are injected
into a high-Q micromaser cavity. It is assumedthat there is just one atom at a time in the
cavity and the initial coherentcavity field is tuned to the two-photon resonancewith the atomic
transition. A superpositionstate of two coherentcomponentstates is generatedby a conditional
measurementof the atomic excitation after an interaction time that determinesthe relative phase
of the componentstates. By a sequenceof the conditional measurementsthe superpositionof
multicomponent coherentstatesmay be generated.As a specialcase,the initial interaction time
is chosento createa superpositionstate of two componentstatesseparatedin phasespaceby _r
and the interaction times are reducedby one half after eachinteraction. The secondconditional
measurementcreatesa superpositionof four componentstates

.9 ,a e,¼_ e_,¼_ ic_e_,¼_) ] (4)I¢)-

where _ is a normalization constant. Eventually, the Nth measurement creates the superposition

of 2 N components separated by 2_/2 N in phase space. We call the state (4) as the Garraway

state.

2 PHASE PROBABILITY DISTRIBUTION FUNCTION

There are quasiprobability distributions according to ordering of system operators. One is the

Glauber P representation which is quasi probability distribution function for the normal ordering

of the system operators and another is the Q function Q(re _°) for antinormal ordering of system

operators [6]. The Wigner function W(re_°)for the symmetrical ordering can be negative. Since

the P function cannot be defined in the nonclassical regime, the P function is not dealt with in

this paper.

We can study the phase probability of the system with help of the quasiprobabilities. We

derive two phase probability distributions from the Q and Wigner quasiprobability distributions

[7]:

p(W)(o) = fo°°rW(rei°)dr (5a)

//P(Q)(o) = rQ(re'°)dr (5b)

Buzek et al. [7] compare these two probability distributions with phase probability defined by Pegg

and Barnett [8]. As for the Wigner function, the Wigner phase probability distribution can have

negative values, which indicate nonclassical nature of the system. For the quantum superposition

state, the quantum interference between component states are best illustrated by the Wigner

phase distribution as it can become negative for the quantum interference of component states.

As shown in Fig.la the quantum interference for the Yurke-Stoler state is reflected by the negative

values of the Wigner phase probability function. However the Wigner function for the Garraway

state is always positive as in Fig.lb. We can therefore conclude that the quantum interference

is not necessarily represented by negative values in the Wigner phase distribution. The Q phase

distribution function is always positive differently from the Wigner phase distribution function as

shown in Fig.1.
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Fig.1. Wigner and Q phase distribution of the Yurke-Stoler (a) and Garraway (b)

state. Solid line shows the Wigner phase distribution and dashed line shows the Q

phase distribution. (c_ = 3)

3 AMPLIFIED SUPERPOSITION STATES

The simplest way to amplify the state of the single-mode field is to displace it by the displacement

operator D(a) [6]. This operator shifts a field state by a given amplitude in phase space. The

displacement of a field state can be implemented by driving the field by a classical current. The

displaced superposition state is expressed by

I¢)-- D = exp (_ff - (6)

where I_b0} is the initial superposition state. From definitions of the quasiprobability distributions

it follows that their shapes are invariant with respect to the action of the displacement opera-

tor. The only difference consists in the shift of the Wigner function of the state in phase space

along the action of the displacement operator. One of consequences of this invariance is that the

displacement of the state does not change the quadrature-squeezing properties associated with

the original state. As the whole picture is displaced along one direction in phase space the ph_/se

distribution will be differed by the action of displacement as shown in Fig.2. The Wigner phase

distribution becomes to have negative values by displacement.

Recently the correlated (phase-sensitive) amplifier has been realized experimentally [9]. In

this section we study the evolution of the phase probability distribution of the superposition

states amplified by the phase-sensitive amplifier. The dynamics of the field mode coupled to the

phase-sensitive amplifier is in the Born and Markov approximation governed by the Fokker-Planck

equation for the Q function, which in the interaction picture can be written as [10]

OQ(o_,t) [ . 0 _ 1 ( 0 O a) Mg 0 2 Mo 0 2Ot - 7 Ao_-_.,_-£ 2 _-:_ c_* + _ + 20_ 2 + 20ot .2 Q(a,t), (7)
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Fig.2. Wigner phase distribution for the displaced Garraway superposition state.

Solid line is for the initial state and dashed line is for the displaced state (cr = 1, a = 3).

where 7 is proportional to the coupling between the field mode and the environment, and No and

M0 are the parameters determined by nature of the amplifier. If the phase-sensitive parameter

M0 is equal to zero then the Fokker-Planck equation (8) reduces into the equation describing the

phase-insensitive amplification of the single mode field. The gain G of the amplifier is defined as

G = exp(Tt).

Fig.3 clearly shows that the choice of the M value determines into which quadrature noise

should be added. When M is positive the phase information at 0 = 0 and _ is kept while the

phase information at 0 = 7r/2 and 37r/2 is lost very rapidly. However, when M is negative the

information at vq = 7r/2, 3rr/2 is kept at the expense of the rapid loss of the information at the

other quadrature.

We consider a stream of atoms injected into a micromaser cavity with an infinite Q. We assume

that there is just one atom at a time in the cavity and the atom makes the two-photon transition

of frequency aJ0 between the nondegenerate ground and excited states via a single intermediate

level. The cavity is assumed to be tuned to the two-photon resonance with the excited and ground

levels and the intermediate level is so detuned not to be excited, so that one photon transitions

can be neglected which means that the transition between the ground and excited levels can be

considered as a two-photon process.

Let us assume that the field mode is initially prepared in a pure state

oo

= Co(k)Ik}. (8)
k=0

and the atom is prepared in the excited state. During the time evolution the atom and the field

become strongly entangled [4]. Nevertheless, at some particular moments they become dynamically

disentangled and are again in their pure states. One of those moments is identical to the revival
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Fig.3. Wigner phase distribution for the Yurke-Stoler state in the phase sensitive

amplifier characterized by No = 3, M0 = V/_ (a) and by No = 3, M0 = -v/_ (b).

Dashed line is for the initial state and solid line is for the state at G = 1.22 (c_ = 3)
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Fig.4. Part of the Wigner phase distribution of the Yurke-Stoler state in the sub-

Poissonian amplifier. Line a is for the initial state, line b is for the state with two extra

photons and line c is for the state with four extra photons. (c_ = 3)
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time tR (see ref.[4] for details) when the atom is (approximately) in its ground state and the field

can be described by the state vector

co

}2 c0(k)lk + 2). (9)
k=0

At this moment exactly two photons are transferred from the atom to the field, so the mean

photon number of the field is fi(1) = h(0) + 2, where fi(i) is the mean photon number of the

cavity field after i atoms pass the cavity. Analogously, after a sequence of M atoms each of which

interacts for time tR with the cavity field, the state vector of the field can be written as:

oo

IqJ(M)) = Co(k)lk + 2M). (10)
k=0

We call the process during which the exact number of photons are transferred to the field as the

sub-Poissonian (amplitude-squeezed) amplification.

In Fig.4 we can see that the Wigner phase distribution function is smoothened by the ampli-

fication. This means that the phase uncertainty is enlarged as the number uncertainty (so that

the energy uncertainty) is reduced by the sub-Poissonian amplification.

This paper was supported by NON DIRECTED RESEARCH FUND, Korea Research Foun-
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